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A Second-Order Microwave Differentiator
Ching-Wen Hsue, Senior Member, IEEE, Tun-Ruey Cheng, and Hwan-Mei Chen

Abstract—A novel approach consisting of discrete signal pro-
cessing (DSP) technique and optimization method is developed to
implement a second-order differentiator at microwave frequencies.
To utilize the transfer function of a second-order differentiator de-
veloped in DSP study, we formulate the chain scattering parame-
ters of transmission lines in the domain. In particular, it is shown
that shunt stubs combining with nonuniform serial lines lead to the
realization of a second-order microwave differentiator. Some ex-
amples are presented to illustrate the validity of this approach.

Index Terms—Nonuniform line, second-order differentiator,
transform.

I. INTRODUCTION

THE DIFFERENTIATOR is a very useful tool to deter-
mine and estimate time derivatives of a signal. It has been

used extensively in many areas, such as image process, speech
system and digital control. In radars and sonars, the velocity and
acceleration of objects are computed from position measure-
ments using differentiators [1]. In biomedical engineering ap-
plications, it is often necessary to attain the higher order deriva-
tives of biomedical data.

Various methods had been developed to design discrete finite
impulsive response (FIR) and infinite impulsive response (IIR)
differentiators [2]–[5]. Al-Alaoui [2] used interpolation method
to develop a stable, minimum-phase digital differentiator. Pei
and Shyu [3] used the eigenapproach to design high order dig-
ital differentiators. In order to obtain low relative error, Kumar
and Ohba [4] employed optimal method to develop digital dif-
ferentiators which are maximally accurate at low frequencies.

Most differentiator studies thus far had been limited to DSP
investigation for applications in the low frequency range. Thus,
the implementation of differentiators for high-frequency appli-
cations has been largely ignored. In this letter, we employ both

-domain method and equal-length transmission lines to im-
plement a second-order differentiator having an operating fre-
quency bandwidth of several gigahertzs.

II. THEORY

The transfer function of a stable first-order differentiator [2]
in the domain is given by

(1)
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TABLE I
CHAIN-SCATTERING-PARAMETERS OF TRANSMISSION LINES

in (1) is obtained by inverting the transfer function of an
interpolating integration rule. The interpolating integration rule
is obtained by taking 0.7 Simpson rule and 0.3 trapezoidal rule.

has a better relative error than the differentiator based on
Simpson integration rule. At 0.6 of full-band normalized fre-
quency, has a relative error of 3.2%, which corresponds
to 30 dB. In particular, has excellent linearity perfor-
mance in the lower frequency range. The linearity of de-
grades gradually as the frequency increases. deviates from
the characteristic of an ideal differentiator significantly for the
normalized frequency greater than 0.7. By taking the square of

, we obtain the transfer function of a second-order differ-
entiator, as follows:

(2)

The frequency-domain responses of and are ob-
tained by setting , where is the angular frequency
and is the sampling time interval.

Table I shows the chain-scattering-parameters (or ) matrices
of a serial transmission line and a two-section shunt-short stub in
the domain, where ( ), , and are propagation
constant, characteristic impedance, and physical length, respec-
tively. Note that is the reference characteristic impedance,
which is assumed to be 50 , unless mentioned otherwise. We
assume that all finite lines have the same electrical length, i.e.,

, where is the propagation delay
time of finite lines. The -domain chain scattering parameters
of transmission lines are obtained by setting .
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If a circuit is composed of serial transmission-line sections
and two-section shunt-short stubs ( and are positive in-
tegers), the overall chain scattering parameters
of such a circuit is obtained by the sequential multiplication of
chain-scattering-parameters matrix of each individual transmis-
sion element [6]. We then have

(3)

where all are real and are determined by the characteristic
impedances of all transmission lines. If the output of the circuit
is loaded with a matched termination, the transfer function of the
overall circuit, denoted as , is equal to .
We then have

(4)

where is a function of characteristic
impedances of transmission lines in either serial or shunt con-
figurations. The term in the numerator of (4) is due to
a two-section shunt-short stub, and the term represents
the delay factor of serial transmission lines.

A closer examination of (2) and (4) indicates that we may use
serial lines and two two-section shunt-short stubs to emulate

a second-order differentiator. Neglecting the propagation delay
factor in (4), we obtain the following:

(5)

Note that in (5) is determined by the characteristic imped-
ances of all transmission lines. Upon using the optimization
method [6] in the sense of least-mean-square error for the de-
nominators in (5), we obtain the characteristic impedances of
transmission lines.

III. EXPERIMENTAL RESULTS

To construct a microwave differentiator, we employ mi-
crostrips to emulate transmission lines. Fig. 1 shows the
physical layout of the microstrips which is built on a Duriod
substrate having thickness 31 mil (0.78 mm) and relative di-
electric constant . Here we use a five-section ( )
serial line shunted with two two-section shunt-short stubs
( ). The characteristic impedances of transmission lines
are obtained by using an optimization process [6] that involves
the comparison between two equivalent autoregression (AR)
processes representing both and . To assure that the
values of characteristic impedances are practically realizable,
the lower and upper bounds of characteristic impedances for
the optimization procedure is set to be .

Fig. 1. Physical layout of the microstrips for a second-order differentiator.

Fig. 2. Magnitude responses of the differentiator. H(f) is the theoretical
value and S (f) is the measured result for the circuit in Fig. 1. S (f)
is the measured reflection coefficient. The magnitude response of an ideal
differentiator is also shown, of which it varies as the square of signal
frequencies.

The characteristic impedances of serial lines from the left
side to right side are 38.4 , 120.3 , 150.9 , 120.2 ,
and 38.6 , and the characteristic impedances of shunt stubs
are , , ,
and . Here, the reference impedance for both
input and output ports is 50 . The ideal propagation delay
time of each finite line is 25 ps which is corresponding to
a maximum operating frequency of 10 GHz. The 25 ps delay
time is equal to the propagation delay of a wave propagating
through a quarter wavelength of a 10 GHz signal. To count for
the discontinuity effect at each junction, we adjust the physical
length of each finite line [7]. Therefore, the final propagation
delay time of each finite line may not be exactly 25 ps. The
ground termination of shunted stubs is implemented by using
through-hole vias. Fig. 2 shows the theoretical values as well
as experimental results of the differentiator for the frequencies
extending from dc to 6 GHz. We should notice that 6 GHz
represents 0.6 of full band normalized frequency. Apparently,
the measured frequency-domain scattering parameter
is in good agreement with . For convenience, Fig. 2
also shows the magnitude response of an ideal second-order
differentiator which varies as the square of signal frequencies.
As stated previously, in (2) deviates from the character-
istic of an ideal differentiator significantly for the frequencies
greater than 0.6 of full band normalized frequency. Therefore,
the frequency responses of the differentiator in that portion
are omitted. For convenience, Fig. 2 also shows the measured
reflection coefficient of the second-order differentiator
shown in Fig. 1.
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IV. CONCLUSION

A second-order microwave differentiator was implemented
by using microstrip transmission lines. In particular, the -do-
main formulations of scattering characteristics of nonuniform
transmission lines facilitate the implementation of discrete-do-
main differentiator in microwave circuits. It is plausible that
many other circuits developed in DSP study can also be imple-
mented by using nonuniform transmission lines for microwave
applications.

REFERENCES

[1] M. I. Skolnik, Introduction to Radar Systems. New York: McGraw-
Hill, 1980.

[2] M. A. Al-Alaoui, “A class of second-order integrators and low-pass dif-
ferentiators,” IEEE Trans. Circuits Syst. I, vol. 42, pp. 220–223, Apr.
1995.

[3] S. C. Pei and J. J. Shyu, “Analytic closed-form matrix designing higher
order digital differentiator using eigen-approach,” IEEE Trans. Signal
Processing, vol. 44, pp. 698–701, Mar. 1996.

[4] B. Kumar and R. Ohba, “Design of digital differentiator for low frequen-
cies,” Proc. IEEE, vol. 76, no. 3, pp. 287–289, Mar. 1988.

[5] I. R. Khan and R. Ohba, “New design of full-band differentiators based
on Taylor series,” Proc. Inst. Elect. Eng., Vis. Image Signal Process., vol.
146, no. 4, pp. 185–189, Aug. 1999.

[6] D.-C. Chang and C.-W. Hsue, “Design and implementation of filters
using transfer functions in the Z domain,” IEEE Trans. Microwave
Theory Tech., vol. 49, pp. 979–985, May 2001.

[7] T. Edwards, Foundations for the Microstrip Circuit Design. New York:
Wiley, 1991.


	MTT025
	Return to Contents


